Perioperative Ischämie – Immer noch ein silent killer?

Prim. Doz. Dr. Johann Knotzer, MSc Anästhesiologie und Intensivmedizin Klinikum Wels, Österreich

johann.knotzer@klinikum-wegr.at

Declaration of Interest

• No conflict of interest to declare

"A cat killer? Is that the face of a cat killer? Cat chaser maybe. But hey—who isn't?"

Myocardial Injury in Non-Cardiac Surgery -MINS

Brush JE. JACC 2016; 68:2365-75.

hs-Troponin

Acute Coronary Syndrome:

Cut-off for rule-out < 12 ng/L Cut-off for rule-in > 52 ng/L

MINS: Cut-off: > 20 ng/L

Horr S.Cleve Clin J Med 2015;82:595-568. Roffi M Eur Heart J 2016;37: 267-315 JAMA | Original Investigation

Association of Postoperative High-Sensitivity Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients Undergoing Noncardiac Surgery

Writing Committee for the VISION Study Investigators

CONCLUSIONS AND RELEVANCE Among patients undergoing noncardiac surgery, peak postoperative hsTnT during the first 3 days after surgery was significantly associated with 30-day mortality. Elevated postoperative hsTnT without an ischemic feature was also associated with 30-day mortality.

|--|

	hsTnT Thresholds	hsTnT Thresholds, ng/L						
	<5	5 to <14	14 to <20	20 to <65	65 to <1000	≥1000		
Patients, No. (%)	5318 (24.4)	8750 (40.1)	2530 (11.6)	4049 (18.6)	1118 (5.1)	54 (0.2)		
Deaths, No. (%)	6 (0.1)	40 (0.5)	29 (1.1)	123 (3.0)	102 (9.1)	16 (29.6)		
Adjusted hazard ratio (95% CI)	1 [Reference]	3.73 (1.58-8.82)	9.11 (3.76-22.09)	23.63 (10.32-54.09)	70.34 (30.60-161.71)	227.01 (87.35-589.92)		
P Value		.003	<.001	<.001	<.001	<.001		

Abbreviation: hsTnT, high-sensitivity troponin T.

^a A total of 21 819 patients were included in this analysis. The Cox proportional hazards model includes the following preoperative variables: active cancer, general surgery, urgent/emergent surgery, history of peripheral vascular

disease, history of chronic obstructive pulmonary disease, age, recent high-risk coronary artery disease, history of stroke, and neurosurgery. Postoperative hsTnT measurements during the first 3 days after surgery were assessed in these analyses.

REVIEW ARTICLE

Troponin elevations after non-cardiac, non-vascular surgery are predictive of major adverse cardiac events and mortality: a systematic review and metaanalysis

S. Ekeloef^{1,*}, M. Alamili¹, P. J. Devereaux^{2,3} and I. Gögenur¹

¹Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege and Roskilde, Denmark, ²Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada and ³Department of Medicine, McMaster University, Hamilton, Ontario, Canada

Fig 2 Forest plot showing the association between postoperative troponin elevation and odds ratio of 30 day mortality. I²=0%. The size of the box represents the weight of that study estimate. Horizontal lines represent 95% confidence intervals.

Ekeloef S. BJA 2016;117:559-568

Causes for myocardial injury

- Type I myocardial infarction (intraluminal thrombosis)
- Direct or traumatic damage of the myocardium
- Imbalance between oxygen demand/supply ratio

Myocardial Oxygen Demand

1. Ventricular wall tension (pressure work)

- 2. Contractility (Changing $\Delta P/\Delta t$ will change MVO_2)
- 3. Heart rate proportional change in MVO₂

Myocardial Oxygen Supply

- 1. Coronary artery flow
- 2. Oxygen content
- 3. Oxygen extraction

Normal myocardial oxygen consumption (MVO_2) is 21-27ml.min⁻¹ Basal oxygen consumption ca. 8 ml/min/100g = 25% of the MVO_2

Myocardial Oxygen Demand

Myocardial Oxygen Supply

- Ventricular wall tension (pressure work)
- 2. Contractility (Changing $\Delta P/\Delta t$ will change MVO_2)
- 1. Coronary artery flow
- 2. Oxygen content
- 3. Oxygen extraction
- 3. Heart rate proportional change in MVO₂
 Two determinants of Oxygen demand/supply demand/supply in the perfusion pressure and the mismatch is the perfusion pressure and the heart rate

Normal myocardial oxygen consumption (MVO₂) is 21-27ml.min⁻¹ Basal oxygen consumption ca. 8 ml/min/100g = 25% of the MVO₂ Modifiable risk factors for MINS: ->Association Between MAP & Death

Mascha, et al., 2015, Anesthesiology

Intraoperative blood pressure & MINS

Salmasi, et al., 2016, Anesthesiology

Which BP component ?

Ahuja, et al., 2019, Anesthesiology

A Prospective International Multicentre Cohort Study of Intraoperative Heart Rate and Systolic Blood Pressure and Myocardial Injury After Noncardiac Surgery: Results of the VISION Study

Tom E. F. Abbott, MRCP,* Rupert M. Pearse, MD,* R. Andrew Archbold, MD,† Tahania Ahmad, MPH,* Edyta Niebrzegowska, MSc,† Andrew Wragg, FRCP,† Reitze N. Rodseth, PhD,‡ Philip J. Devereaux, PhD,§ and Gareth L. Ackland, PhD*

Abbott TEF Anesth Analg 2018;126:1936-1945

Determinant Time of Tachycardia

HR and SBP group	os							MINS						
Duration of HR >100 bpn	n													
<5 minutes		H		•										
5 - 10 mintues		-		•		-								
11 - 30 minutes			-	-										
>30 minutes								H		-				
Duration of HR <55 bpm														
<14 minutes			-											
14 - 30 minutes		·		_										
31 - 65 minutes		-	-	-										
> 65 minutes	+													
Duration of SBP >160 mm	nHg													
<6 minutes				-			-							
6 - 12 minutes							-							
13 - 25 minutes					-									
>25 minutes				-										
Duration of SBP <100 mn	nHg													
<15 minutes				H			-							
15 - 30 minutes														
31 - 61 minutes			⊢			4								
>61 minutes					_	•								
	04	0.6	0.8	10	12	14	16	1.9	20	22	2.4	26	2.8	2

Abbott TEF Anesth Analg 2018;126:1936-1945

Original Article

Prolonged Tachycardia with Higher Heart Rate Is Associated with Higher ICU and In-hospital Mortality

Masao Hayashi^a*, Arata Taniguchi^a, Ryuji Kaku^a, Shusaku Fujimoto^b, Satoshi Isoyama^a, Sei Manabe^c, Tsubasa Yoshida^d, Satoshi Suzuki^a, Kazuyoshi Shimizu^a, Hiroshi Morimatsu^a, and Ryusuke Momota^e

Fig. 2 A, The mortality in the ICU and in the hospital. The patients were stratified by HR alone as LowHR (100 \leq HR < 110), MediumHR (110 \leq HR < 120), and HighHR (HR \geq 120). Both the ICU and in-hospital mortality rates were significantly higher in the HighHR group compared to the LowHR group. $† \rho < 0.05$, $* \rho < 0.01$ by Fisher's exact test; B, The Kaplan-Meier curves of the LowHR, MediumHR, and HighHR groups. These results confirmed those illustrated in panel A. $† \rho < 0.05$, $* \rho < 0.01$ by log rank test.

Groups	OR of mortality in ICU	

Table 2 Odds Ratio of group MediumHR and HighHR to LowHR

Groups		OR of mortality in ICU	J	OR of mortality in hospital			
	OR	95%CI	p value	OR	95%CI	p value	
LowHR	1	_	-	1	-	_	
MediumHR	1.5	0.1-37.2	0.79	4.5	0.6-91.7	0.16	
HighHR	7.3	1.2-138.0	$<$ 0.05 †	13.7	2.5-256.6	< 0.01*	

(†: <0.05, *: <0.01)

Hayashi M Acta Med Oca 2019;73:147-153

Lung surgery: Troponin and MINS

Lung surgery and MINS

Table 3. Intraoperative tachycardia and hypotension in patients with high-sensitive troponin levels of > 20 ng/L and > 37 ng/L, respectively.

	Time MAP < 60 mmHg	p - value	Time HR > 90 bpm	p - value
hs-Trop < 20 ng/L	24 ± 26 min	0.003	6 ± 18 min	0.006
hs-Trop≥20 ng/L	36 ± 30 min		14 ± 26 min	
hs-Trop < 37 ng/L	27 ± 28 min	0.178	8 ± 18 min	0.010
hs-Trop≥37 ng/L	33 ± 30 min		16 ± 30 min	

Kotzinger O under review

Pathomechanismus

Myocardial oxygen demand-supply relationship Koronare Blutfluss Gesunden: 250 ml/min ~ 5% HZV ER 60 – 70% Maximaler Blutfluss beim Gesunden: 390 ml/min bei HF 165

• Tachykardie vermeiden!

 Frequenz über 100 erhöht den Sauerstoff-demand und erniedrigt gleichzeitig das Sauerstoffangebot!

Tachycardia-Induced Subendocardial Necrosis in Acutely Instrumented Dogs with Fixed Coronary Stenosis

Giora Landesburg, MD, DSc*, Wei Zhou, MD+, and Thomas Aversano, MD*

*Department of Anesthesiology and Critical Care Medicine, Hebrew University-Hadassah Hospital, Jerusalem, Israel; and †Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, Maryland

cumplex (LCX) (non-risk) area, myocardial blood flow at the end of the experiment. epi = epicardium, mid = midmyocardium, endo = endocardium.

Landesberg G. Anesth Analg 1999;88:973-979

ESC Guidelines

ESC GUIDELINES

2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery

Developed by the task force for cardiovascular assessment and management of patients undergoing non-cardiac surgery of the European Society of Cardiology (ESC)

Endorsed by the European Society of Anaesthesiology and Intensive Care (ESAIC)

ESC Guidelines

		Definition	Wording to use
mmendations	Class I	Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.	Is recommended or is indicated
s of reco	Class II	Conflicting evidence and/or a divergence efficacy of the given treatment or proce	e of opinion about the usefulness/ dure.
Classe	Class IIa	Weight of evidence/opinion is in favour of usefulness/efficacy.	Should be considered
	Class IIb	Usefulness/efficacy is less well established by evidence/opinion.	May be considered
	Class III	Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.	e Is not recommended

Level of evidence A	Data derived from multiple randomized clinical trials or meta-analyses.
Level of evidence B	Data derived from a single randomized clinical trial or large non-randomized studies.
Level of evidence C	Consensus of opinion of the experts and/or small studies, retrospective studies, registries.

02.2

In patients who have known CVD, CV risk factors (including age \geq 65 years), or symptoms suggestive of CVD, it should be considered to measure BNP or NT-proBNP before intermediate- and high-risk NCS. ^{52,104,112–114}	lla	В	
In low-risk patients undergoing low- and intermediate-risk NCS, it is not recommended to routinely obtain pre-operative ECG, hs-cTn T/I, or BNP/NT-proBNP concentrations. ^{109,111,117–119}	ш	В	© ESC 2022

ESC. Eur Heart J 2022; 43:3826-3924

ESC guidelines: Surgical risk

Table 5 Surgical risk estimate according to type of surgery or intervention

Low surgical risk (<1%)	Intermediate surgical risk (1–5%)	High surgical risk (>5%)
• Breast	Carotid asymptomatic (CEA or CAS)	Adrenal resection
• Dental	Carotid symptomatic (CEA)	 Aortic and major vascular surgery
Endocrine: thyroid	Endovascular aortic aneurysm repair	Carotid symptomatic (CAS)
• Eye	Head or neck surgery	 Duodenal-pancreatic surgery
Gynaecological: minor	Intraperitoneal: splenectomy, hiatal hernia	Liver resection, bile duct surgery
Orthopaedic minor (meniscectomy)	repair, cholecystectomy	 Oesophagectomy
Reconstructive	Intrathoracic: non-major	Open lower limb revascularization for acute limb
Superficial surgery	• Neurological or orthopaedic: major (hip and	ischaemia or amputation
Urological minor: (transurethral resection	spine surgery)	 Pneumonectomy (VATS or open surgery)
of the prostate)	 Peripheral arterial angioplasty 	Pulmonary or liver transplant
 VATS minor lung resection 	Renal transplants	Repair of perforated bowel
	Urological or gynaecological: major	Total cystectomy

CAS, carotid artery stenting; CEA, carotid endarterectomy; CV, cardiovascular; MI, myocardial infarction; VATS, video-assisted thoracic surgery.

Surgical risk estimate is a broad approximation of 30 day risk of CV death, MI, and stroke that takes into account only the specific surgical intervention, without considering the patient's comorbidities.

ESC. Eur Heart J 2022; 43:3826-3924

ESC Guidelines: CV risk factors

1

≻65 years or

- Arterial hypertension
- ➤Smoking
- ➢ Dyslipidaemia
- ➢ Diabetes
- ➢ Family history of CVD

Figure 2 Pre-operative assessment before non-cardiac surgery. CV, cardiovascular; CVD, cardiovascular disease; ECG, electrocardiogram; N, no; NCS, non-cardiac surgery. Y, yes; ^aCV risk factors: hypertension, smoking, dyslipidaemia, diabetes, family history of CVD. ^bBiomarkers: hs-cTn T/I (Class I) and/ or BNP/NT-proBNP (Class IIa). If pathological, consult a cardiologist. ^cFunctional capacity based on Duke Activity Status Index (DASI) or the ability to climb two flights of stairs. ^dFor diagnostic and therapeutic efforts to be considered, see *Section 6*. ^eClose follow-up after intervention and subsequent management of heart disease are advised.

ESC. Eur Heart J 2022; 43:3826-3924

Why measuring troponin up to 72 hours?

Annals of Internal Medicine[®]

LATEST ISSUES IN THE CLINIC JOURNAL CLUB MULTIMEDIA CME / MOC AUTHORS / SUBMIT

Original Research | 19 April 2011

Characteristics and Short-Term Prognosis of Perioperative Myocardial Infarction in Patients Undergoing Noncardiac Surgery

Search Journal

A Cohort Study

P.J. Devereaux, MD, PhD 🖾, Denis Xavier, MD, MSc, Janice Pogue, MSc, Gordon Guyatt, MD, MSc, See More 🕂

Devereaux PJ et al. Ann Intern Med 2011;154:523-528

Most MI (74.1%) occured within 48 hours of surgery

65.3% of patients did not experience ischemic symptoms

30-day mortality rate was 11.6% among patients who had PMI

Consequences: Basel PMI trial

Figure 3. Cardiac troponin and mortality.

Association of absolute high-sensitivity cardiac troponin T (hs-cTnT) increase and maximum postoperative hs-cTnT level with 30-day mortality (black continuous line with 95% confidence intervals in gray). A general linear fit is shown as red dashed line. Because the association of absolute hs-cTnT increases with 30-day mortality might be affected by identifying and flagging patients with perioperative myocardial injury in clinical routine at hs-cTnT deltas of \geq 14 ng/L, this threshold was highlighted in the plot of absolute hs-cTnT increase (green dashed line).

Puelacher C et al. Circulation 2018; 137:1221-1232

Conclusion

- MINS und Mortality
- Causes for MINS: oxygen demand/supply imbalance
- Hypotension and MINS
- Tachycardia and MINS
- Discussion

Discussion

'Ether Day' von W.Prosperi, 1846

"Gentlemen, this is no Humbug"

John C. Warren, 1846

johann.knotzer@klinikum-wegr.at